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KEY POINTS

� AI in breast imaging is expected to impact both interpretation efficacy and workflow efficiency in
radiology as it is applied to imaging examinations being routinely obtained in clinical practice.

� AI algorithms, including human-engineered radiomics algorithms and deep learning methods, have
been under development for multiple decades.

� AI can have a role in improving breast cancer risk assessment, detection, diagnosis, prognosis, as-
sessing response to treatment, and predicting recurrence.

� Currently the main use of AI algorithms is in decision support, where computers augment human
decision-making as opposed to replacing radiologists.
INTRODUCTION mammography in women with dense breasts
Breast cancer is the most commonly diagnosed
cancer and the second leading cause of cancer
death among women in the United States, with
over 281,000 estimated new cases and 43,000
estimated deaths in 2021.1 Owing to its high
prevalence, the advancement of clinical practice
and basic research to predict the risk, detect and
diagnose the disease, and predict response to
therapy has a high potential impact. Over the
course of many decades, medical imaging mo-
dalities have been developed and used in routine
clinical practice for these purposes in several ca-
pacities, including detection through screening
programs, staging when a cancer is found, and
planning and monitoring treatment. Screening
with mammography is associated with a 20% –
40% reduction in breast cancer deaths.2 Howev-
er, screening with mammography alone may be
insufficient for women at high risk of breast can-
cer.3 For example, cancers can be missed at
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because of the camouflaging effect.4 The need
for more effective assessment strategies has
led to the emergence of newer imaging tech-
niques for supplemental screening and diag-
nostic, prognostic, and treatment purposes,
including full-field digital mammography (FFDM),
multiparametric magnetic resonance imaging
(MRI), digital breast tomosynthesis (DBT), and
automated breast ultrasound (ABUS).2,5

While imaging technologies have expanding
roles in breast cancer and have provided radiolo-
gists with multimodality diagnostic tools applied
to various clinical scenarios, they have also led
to an increased need for interpretation expertise
and reading time. The desire to improve the effi-
cacy and efficiency of clinical care continues to
drive innovations, including artificial intelligence
(AI). AI offers the opportunity to optimize and
streamline the clinical workflow as well as aid in
many of the clinical decision-making tasks in im-
age interpretations. AI’s capacity to recognize
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Hu & Giger1028
complex patterns in images, even those that are
not noticeable or detectable by human experts,
transforms image interpretation into a more quan-
titative and objective process. AI also excels at
processing the sheer amount of information in
multimodal data, giving it the potential to integrate
not only multiple radiographic imaging modalities
but also genomics, pathology, and electronic
health records to perform comprehensive ana-
lyses and predictions.
AI-assisted systems, such as computer-aided

detection (CADe), diagnosis (CADx), and triaging
(CADt), have been under development and
deployment for clinical use for decades and have
accelerated in recent years with the advancement
in computing power and modern algorithms.6–10

These AI methods extract and analyze large vol-
umes of quantitative information from image
data, assisting radiologists in image interpretation
as a concurrent, secondary, or autonomous
reader at various steps of the clinical workflow. It
is worth noting that while AI systems hold
Table 1
FDA-cleared AI algorithm for breast imaging

Product Company

ClearView cCAD ClearView Diagnostics
Inc

QuantX Quantitative Insights,
Inc

Insight BD Siemens Healthineers

DM-Density Densitas, Inc

PowerLook Density
Assessment Software

ICAD Inc

DenSeeMammo Statlife

Volpara Imaging
Software

Volpara Health
Technologies Limited

cmTriage CureMetrix, Inc

Koios DS Koios Medical, Inc

ProFound AI Software
V2.1

ICAD Inc

densitas densityai Densitas, Inc

Transpara ScreenPoint Medical
B.V.

MammoScreen Therapixel

HealthMammo ZebraMedical Vision Ltd

WRDensity Whiterabbit.ai Inc

Genius AI Detection Hologic, Inc

Visage Breast Density Visage Imaging GmbH

Abbreviations: US, ultrasound.
Data from FDA Cleared AI Algorithm. https://models.acrdsi.o
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promising prospects in breast cancer image anal-
ysis, they also bring along challenges and should
be developed and used with abundant caution.
It is important to note that in AI development,

two major aspects need to be considered: (1)
development of the AI algorithm and (2) evaluation
of how it will be eventually used in practice.
Currently, most AI systems are being developed
and cleared by US Food and Drug Administration
(FDA) to augment the interpretation of the medical
image, as opposed to autonomous use. These
computer-aided methods of implementation
include a second reader, a concurrent reader,
means to triage cases for reading prioritization,
and methods to rule out cases that might not
require a human read (a partial autonomous use).
In the evaluation of such methods, the human
needs to be involved as in dedicated reader
studies to demonstrate effectiveness and safety.
Table 1 provides a list of AI algorithms cleared
by the FDA for various use cases in breast
imaging.11
Modality Use Case Date Cleared

US Diagnosis 12/28/16

MRI Diagnosis 7/19/17

FFDM, DBT Breast density 2/6/18

FFDM Breast density 2/23/18

DBT Breast density 4/5/18

FFDM Breast density 6/26/18

FFDM, DBT Breast density 9/21/18

FFDM Triage 3/8/19

US Diagnosis 7/3/19

DBT Detection,
Diagnosis

10/4/19

FFDM, DBT Breast density 2/19/20

FFDM, DBT Detection 3/5/20

FFDM Detection 3/25/20

FFDM Triage 7/16/20

FFDM, DBT Breast density 10/30/20

DBT Detection,
Diagnosis

11/18/20

FFDM, DBT Breast density 1/29/21

rg.
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This article focuses on the research and devel-
opment of AI systems for clinical breast cancer im-
age analysis, covering the role of AI in the clinical
tasks of risk assessment, detection, diagnosis,
prognosis, as well as treatment response moni-
toring and risk of recurrence. In addition to pre-
senting applications by task, the article will start
with an introduction to human-engineered radio-
mics and deep learning techniques and conclude
with a discussion on current challenges in the field
and future directions.
HUMAN-ENGINEERED ANALYTICS AND DEEP
LEARNING TECHNIQUES

AI algorithms often use either human-engineered,
analytical, or deep learning methods in the devel-
opment of machine intelligence tasks. Human-
engineered features are mathematical
descriptors/model-driven analytics developed to
characterize lesions or tissue in medical images.
Fig. 1. Schematic flowchart of a computerized tumor phe
CAD radiomics pipeline includes computer segmentation
puter-extraction of human-engineered radiomic features c
tumor dimensions), (2) shape (quantifying the 3D geometr
enhancement texture (describing the heterogeneity withi
the first postcontrast MRIs), (5) kinetic curve assessment (d
the physiologic process of the uptake and washout of the
aging series, and (6) enhancement-variance kinetics (chara
enhancement within the tumor). CAD, computer-aided d
(From Giger ML. Machine learning in medical imaging. J A
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These features quantify visually discernible char-
acteristics, such as size, shape, texture, and
morphology, collectively describing the pheno-
types of the anatomy imaged. They can be auto-
matically extracted from images of lesions using
computer algorithms with analytical expressions
encoded, and machine learning models, such as
linear discriminant analysis and support vector
machines, can be trained on the extracted fea-
tures to produce predictions for clinical questions.
The extraction of human-engineered features
often requires a prior segmentation of the lesion
from the parenchyma background. Such extrac-
tion of features has been conducted on mammog-
raphy, tomosynthesis, ultrasound, and MRI.8,12

For example, Fig. 1 presents a CADx pipeline
that automatically segments breast lesions and
extracts six categories of human-engineered
radiomic features from dynamic contrast-
enhanced (DCE) MRI on a workstation.13–18 Note
that the extraction and interpretation of features
notyping system for breast cancers on DCE-MRI. The
of the tumor from the local parenchyma and com-
overing six phenotypic categories: (1) size (measuring
y), (3) morphology (characterizing tumor margin), (4)
n the texture of the contrast uptake in the tumor on
escribing the shape of the kinetic curve and assessing
contrast agent in the tumor during the dynamic im-

cterizing the time course of the spatial variance of the
iagnosis; DCE-MRI, dynamic contrast-enhanced MRI.
m Coll Radiol. 2018;15(3):512-520; with permission.)
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depend on the imaging modality and the clinical
task required.
In addition, AI systems that use deep learning al-

gorithms have been increasingly developed for
health care applications in recent years.19 Deep
learning is a subfield of machine learning and has
seen a dramatic resurgence recently, largely
driven by increases in computational power and
the availability of large data sets. Some of the
greatest successes of deep learning have been
in computer vision, which considerably acceler-
ated AI applications of medical imaging.
Numerous types of models, including convolu-
tional neural networks (CNNs), recurrent neural
networks (RNNs), autoencoders, generative
adversarial networks, and reinforcement learning,
have been developed for medical imaging applica-
tions, where they automatically learn features that
optimally represent the data for a given task during
the training process.20,21 Medical images, never-
theless, pose a set of unique challenges to deep-
learning-based computer vision methods, and
breast imaging is no exception. For one, the
high-dimensionality and large size of medical im-
ages allow them to contain a wealth of clinically
useful information but make them not suitable for
naive applications of standard CNNs developed
for image recognition and object detection tasks
in natural images. Furthermore, medical imaging
data sets are usually relatively small in size and
can have incomplete or noisy labels. The lack of
interpretability is another hurdle in adopting
deep-learning-based AI systems for clinical use.
Transfer learning, fusion and aggregation
methods, multiple-instance learning, and explain-
able AI methods continue to be developed to
address these challenges in using deep learning
algorithms for medical image analysis.22–25

Human-engineered radiomics and deep
learning methods for breast imaging analysis
both have advantages and disadvantages
regarding computation efficiency, amount of data
required, preprocessing, interpretability, and pre-
diction accuracy. They should be chosen based
on the specific tasks and can be potentially inte-
grated to maximize the benefits of each.26,27 The
following sections will cover both of them for
each clinical task when applicable.
ARTIFICIAL INTELLIGENCE IN BREAST CANCER
RISK ASSESSMENT AND PREVENTION

Computer vision techniques have been developed
to extract quantitative biomarkers from normal tis-
sue that are related to cancer risk factors in the
task of breast cancer risk assessment in AI-
assisted breast image analysis. To improve upon
Downloaded for Anonymous User (n/a) at Nevada System of Higher 
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the current one-size-fits-all screening programs,
computerized risk assessment can potentially
help estimate a woman’s lifetime risk of breast
cancer and, thus, recommend risk-stratified
screening protocols and/or preventative therapies
to reduce the overall risk. Risk models consider
risk factors, including demographics, personal his-
tory, family history, hormonal status, and hormonal
therapy, as well as image-based characteristics
such as breast density and parenchymal pattern.
Breast density and parenchymal patterns have

been shown to be strong indicators in breast can-
cer risk estimation.28 Breast density refers to the
amount of fibroglandular tissue relative to the
amount of fatty tissue. These tissue types are
distinguishable on FFDM because fibroglandular
tissue attenuates x-ray beams much more than
fatty tissue. Breast density has been assessed
by radiologists using the four-category Breast Im-
aging Reporting and Data System (BI-RADS) den-
sity ratings, proposed by the American College of
Radiology.29 Computerized methods for assess-
ing breast density include calculating the skew-
ness of the gray-level histograms of FFDMs, as
well as estimating volumetric density from the 2D
projections on FFDMs.8,30,31 Automated assess-
ment of breast density on mammograms is now
routinely performed using FDA-cleared clinical
systems in breast cancer screening.
On a mammogram, the parenchymal pattern in-

dicates the spatial distribution of dense tissue. To
quantitatively evaluate the parenchymal pattern of
the breast, various texture-based approaches
have been investigated to characterize the spatial
distribution of gray levels in FFDMs.8 Such radio-
mic texture analyses have been conducted using
data sets from high-risk groups (eg, BRCA1/
BRCA2 gene mutation carriers and women with
contralateral cancer) and data sets from low or
average risk groups (eg, routine screening popula-
tions). Results have shown that women at high risk
of breast cancer tend to have dense breasts with
parenchymal patterns that are coarse and low in
contrast.32–34 Texture analysis on DBT images
have also been conducted for risk assessment,
with early results showing that texture features
correlated with breast density better on DBT than
on FFDM.35

Beyond FFDM and DBT, investigators have also
assessed the background parenchymal enhance-
ment (BPE) on DCE-MRI. It has been shown that
quantitative measures of BPE are associated
with the presence of breast cancer, and relative
changes in BPE percentages are predictive of
breast cancer development after risk-reducing
salpingo-oophorectomy.36 A more recent study
shows that BPE is associated with an increased
Education from ClinicalKey.com by Elsevier on January 
. Copyright ©2023. Elsevier Inc. All rights reserved.
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risk of breast cancer, and the risk is independent
of breast density.37

Various deep learning methods for breast can-
cer risk assessment have been reported.38,39

One of these methods has shown strong agree-
ment with BI-RADS density assessments by radi-
ologists.40 Another deep learning approach has
demonstrated superior performance to methods
based on human-engineered features in assessing
breast density on FFDMs, as deep learning algo-
rithms can potentially extract additional informa-
tion contained in FFDMs beyond features defined
by human-engineered analytical expressions.41

Moreover, studies have also compared and
merged radiomic texture analysis and deep
learning approaches in characterizing paren-
chymal patterns on FFDMs, showing that the com-
bination yield improved results in predicting risk of
breast cancer (Fig. 2).39 Besides analyses of
FFDM, a deep learning method based on U-Net
has been developed to segment fibroglandular tis-
sue on MRI to calculate breast density.42
Fig. 2. Schematic of methods for the classification of
ROIs using human-engineered texture feature analysis
and deep convolutional neural network methods.
ROI, region of interest. (From Li H. et al. Deep learning
in breast cancer risk assessment: evaluation of convo-
lutional neural networks on a clinical dataset of full-
field digital mammograms. J Med Imaging 2017;4;
with permission.)
ARTIFICIAL INTELLIGENCE IN BREAST CANCER
SCREENING AND DETECTION

Detection of abnormalities in breast imaging is a
common task for radiologists when reading
screening images. Detection task refers to the
localization of a lesion, including mass lesion, clus-
tered microcalcifications, and architectural distor-
tion, within the breast. One challenge when
detecting abnormalities is that dense tissue can
mask the presence of an underlying lesion at
mammogram, resulting in missed cancers during
breast cancer screening. In addition, radiologists’
ability to detect lesions is also limited by inaccu-
rate assessment of subtle or complex patterns,
suboptimal image quality, and fatigue. Therefore,
although screening programs have contributed to
a reduction in breast cancer–related mortality,43

this process tends to be costly, time-consuming,
and error-prone. As a result, CADe methods
have been in development for decades to serve
a reader besides the radiologists in the task of
finding suspicious lesions within images.

In the 1980s, CADe for clustered microcalcifica-
tions in digitized mammography was developed
using a difference-image technique in which a
signal-suppressed image was subtracted from a
signal-enhanced image to remove the structured
background.44 Human-engineered features were
extracted based on the understanding of the
signal presentation on mammograms. With the
introduction of FFDM, various radiomics methods
have evolved and progressed over the years.6–9,12

In 1994, a shift-invariant artificial neural network
Downloaded for Anonymous User (n/a) at Nevada System of H
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was used for computerized detection of clustered
microcalcifications in breast cancer screening,
which was the first journal publication on the use
of CNN in medical image analysis (Fig. 3).45

The ImageChecker M1000 system (version 1.2;
R2 Technology, Los Altos, CA) was approved by
the FDA in 1998, which marked the first clinical
translation of mammographic CADe. The system
was approved for use as a second reader, where
the radiologist would first perform their own inter-
pretation of the mammogram and would only
view the CADe system output afterward. A poten-
tial lesion indicated by the radiologist but not by
the computer output would not be eliminated,
ensuring that the sensitivity would not be reduced
with the use of CADe. Clinical adoption increased
as CADe systems continued to improve. By 2008,
CADe systems were used in 70% of screening
mammography studies in hospital-based facilities
and 81% of private offices46 and stabilized at over
90% of digital mammography screening facilities
in the US from 2008 to 2016.47

With the adoption of DBT in screening pro-
grams, the development of CADe methods for
DBT images accelerated, first as a second reader
andmore recently as a concurrent reader.48 Amul-
tireader, multi-case reader study evaluated a deep
learning system developed to detect suspicious
igher Education from ClinicalKey.com by Elsevier on January 
mission. Copyright ©2023. Elsevier Inc. All rights reserved.



Fig. 3. Illustration of the first journal publication on the use of a convolutional neural network (CNN), that is, a
shift-invariant neural network, in medical image analysis. The CNN was used in a computer-aided detection sys-
tem to detect microcalcification on digitized mammograms and later on full-field digital mammograms. (A) A 2D
shift-invariant neural network. (B) Illustration of input testing image, output image, desired output image, and
responses in hidden layers. (From Zhang W. et al. Computerized detection of clustered microcalcifications in dig-
ital mammograms using a shift-invariant artificial neural network. Med Phys. 1994;21(4):517-524; with
permission.)
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soft-tissue and calcified lesions in DBT images
and found that the concurrent use of AI improved
cancer detection accuracy and efficiency as
shown by the increased area under the receiver
operating characteristic curve (AUC), sensitivity,
and specificity, as well as the reduced recall rate
and reading time.49

The recommendation for high-risk patients to
receive additional screening with ABUS and/or
MRI has motivated the development of CADe on
these imaging modalities.50–54 In a reader study,
an FDA-approved AI system for detecting lesions
on 3D ABUS images showed that when used as
a concurrent reader, the system was able to
reduce the interpretation time while maintaining
diagnostic accuracy.55 Another study developed
a CNN-based method that was able to detect
breast lesions on the early-phase images in
DCE-MRI examinations, suggesting its potential
use in screening programs with abbreviated MRI
protocols.
Investigators continue working toward the ulti-

mate goal of using AI as an autonomous reader
in breast cancer screening and have delivered
promising results.56 A recent study demonstrated
that their deep learning system yielded a higher
AUC than the average AUC of six human readers
and was noninferior to radiologists’ double-
reading consensus opinion. They also showed
through simulation that the system could obviate
double reading in 88% of UK screening cases
while maintaining a similar level of accuracy to
the standard protocol.57 Another recent study pro-
posed a deep learning model whose AUC was
greater than the average AUC of 14 human
readers, reducing the error approximately by half,
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and combining radiologists’ assessment and
model prediction improved the average specificity
by 6.3% compared to human readers alone
(Fig. 4).58 It is worth noting that similar to their pre-
decessors, the new CADe systems require addi-
tional studies, especially prospective ones, to
gauge their real-world performance, robustness,
and generalizability before being introduced into
the clinical workflow.
Furthermore, researchers are also investigating

the use of AI for triaging and rule out in CADt sys-
tems. In a screening program with a CADt system
implemented, a certain percentage of FFDMs
would be deemed negative by the algorithm
without having a radiologist read their mammo-
grams, and those patients would be asked to re-
turn for their next screening after the regular
screening interval (Fig. 5). In a simulation study,
a deep learning approach was used to triage
20% of screening mammograms, and the results
showed improvement in radiologist efficiency
and specificity without sacrificing sensitivity.59
ARTIFICIAL INTELLIGENCE IN BREAST CANCER
DIAGNOSIS AND PROGNOSIS

During the workup of a breast lesion, diagnosis
and prognosis occur after the lesion has been
detected by either screening mammography or
other examinations. Lesion characterization oc-
curs at this step, and thus, it is a classification
task, leaving the radiologist to further assess the
likelihood that the lesion is cancerous and deter-
mine if the patient should proceed to biopsy for
pathologic confirmation. Oftentimes, multiple im-
aging modalities, including additional
Education from ClinicalKey.com by Elsevier on January 
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Fig. 4. (A) Overall architecture of the globally aware
multiple instance classifier (GMIC), in which the patch
map indicates positions of the region of interest
patches (blue squares) on the input. (B) The receiver
operating characteristic curves and precision-recall
curves computed on the reader study set. (a, a*):
Curves for all 14 readers. (b, b*): Curves for hybrid
models with each single reader. The curve highlighted
in blue indicates the average performance of all hy-
brids. (c, c*): Comparison among the GMIC, deep mul-
tiview convolutional neural network (DMV-CNN), the
average reader, and average hybrid. (From Shen Y.
et al. An interpretable classifier for high-resolution
breast cancer screening images utilizing weakly super-
vised localization. Med Image Anal. 2021;68:101908;
with permission. (For interpretation of the references
to color in this figure legend, the reader is referred to
the web version of this article.))
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mammography, ultrasound, or MRI, are involved in
this diagnostic step to better characterize the sus-
pect lesion. When a cancerous tumor is diag-
nosed, additional imaging is usually conducted
to assess the extent of the disease and determine
patient management. Given its ability to quantita-
tively analyze complex patterns in images and pro-
cess large amounts of information, AI is well suited
for the tasks of breast cancer diagnosis and prog-
nosis using image data.

Since the 1980s, investigators have been devel-
oping machine learning techniques for CADx in the
task of distinguishing between malignant and
benign breast lesions.8 From the input image of a
lesion, the AI algorithm either extracts human-
engineered radiomic features or automatically
learns predictive features in the case of deep
learning and then outputs a probability of malig-
nancy of the lesion. Algorithms should be trained
using pathologically confirmed ground truth to
ensure the quality of the data and, in turn, the
predictions.

Over the decades, investigators have developed
CADx methods that merge features into a tumor
signature.9,12,18 Although some radiomic features,
such as size, shape, and morphology, can be
extracted across various imaging modalities,
others are dependent on the modality. For
example, spiculation may be extracted from
mammographic images of lesions with high spatial
resolution, while kinetics-based features are spe-
cial for DCE-MRI, which contains a temporal
sequence of images that visualize the uptake and
washout of the contrast agent in the breast.13–17
Fig. 5. Diagram illustrating the experimental setup
for triage analysis (CADt). In the standard scenario, ra-
diologists read all mammograms. In CADt (or rule-
out), radiologists only read mammograms above the
model’s cancer-free threshold. (From Yala A. et al. A
deep learning model to triage screening mammo-
grams: a simulation study. Radiology 2019;293:38-46;
with permission.)
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Fig. 6. Comparisons of classifier performance in distinguishing between benign and malignant breast lesions
when different methods are used to incorporate volumetric information of breast lesions on DCE-MRI. (A) Using
the maximum intensity projection (MIP) of the second postcontrast subtraction image outperformed using the
central slice of both the second postcontrast subtraction images and the second-post contrast images. CS, central
slice. (B) Feature MIP, that is, max pooling the feature space of all slices along the axial dimension, outperformed
using image MIP at the input. (From [A] Antropova N, Abe H, Giger ML. Use of clinical MRI maximum intensity
projections for improved breast lesion classification with deep convolutional neural networks. J Med Imaging
2018;5(1):14503; with permission. [B] Hu Q, et al. Improved Classification of Benign and Malignant Breast Lesions
using Deep Feature Maximum Intensity Projection MRI in Breast Cancer Diagnosis using Dynamic Contrast-
Enhanced MRI. Radiol Artif Intell. 2021:e200159; with permission.)
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Moreover, when a feature defined by the same
analytical expression is extracted from different
imaging modalities, the phenotypes being quanti-
fied can be different. For example, texture features
can be extracted from the enhancement patterns
in DCE-MRI to assess the effects of angiogenesis,
but these mathematical texture descriptors char-
acterize different properties of the lesion when
extracted from T2-weighted MRI or diffusion-
weighted MRI because of the underlying differ-
ences between these MRI sequences.60–62 There
is also evidence that radiomic analysis on contra-
lateral parenchyma, in addition to the lesion itself,
may add value to breast lesion classification.63

Deep learning–based methods have also been
developed and proven promising to differentiate
benign and cancerous lesions on multiple imaging
modalities, including FFDM, DBT, ABUS, and
MRI.64–67 Owing to the limited size of data sets in
the medical imaging domain, transfer learning is
often used where the deep network is initialized
with weights pretrained on millions of natural im-
ages. As natural images are 2D color images,
various approaches have been proposed to maxi-
mally use the information in high-dimensional (3D
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or 4D), gray-level medical images with the pre-
trained model architectures. For example, the
maximum intensity projection of image slices or
feature space as well as 3D CNNs has been
used to incorporate volumetric information
(Fig. 6), and subtraction images, RGB channels
in pretrained CNNs, and RNNs have been used
to incorporate temporal information (Fig. 7).68–73

-With the advancements in breast imaging tech-
nology, CADx methods continue to evolve to use
the increasingly rich phenotypical information pro-
vided in the images and improve the diagnostic
performance. For example, multiparametric MRI
has been adopted for routine clinical use and has
proven to improve clinical diagnostic performance
for breast cancer because the different sequences
in a multiparametric MRI examination provide
complementary information.5,74 AI methods that
incorporate the multiple MRI sequences in an ex-
amination have been developed in recent years
and have demonstrated improved diagnostic per-
formance compared with using DCE-MRI alone
(Fig. 8).60,61,67,71 One of these studies investigated
fusion strategies at various levels of the classifica-
tion pipeline and found that latent feature fusion
Education from ClinicalKey.com by Elsevier on January 
. Copyright ©2023. Elsevier Inc. All rights reserved.



Fig. 7. Illustrations of image two approaches of using
the temporal sequence of images in DCE-MRI in deep
learning–based computer-aided diagnosis methods in
distinguishing between benign and malignant breast
lesions. (A) The same region of interest (ROI) is crop-
ped from the first, second, and third postcontrast sub-
traction images and combined in the red, green, and
blue (RGB) channels to form an RGB ROI. (B) Features
extracted using a pretrained convolutional neural
network (CNN) from all time points in DCE-MRI se-
quences are analyzed by a long short-term memory
(LSTM) network to predict the probability of malig-
nancy. (From [A] Hu Q. et al. Improved Classification
of Benign and Malignant Breast Lesions using Deep
Feature Maximum Intensity Projection MRI in Breast
Cancer Diagnosis using Dynamic Contrast-Enhanced
MRI. Radiol Artif Intell. 2021:e200159; with permis-
sion. [B] Antropova N, et al. Breast lesion classification
based on dynamic contrast-enhanced magnetic reso-
nance images sequences with long short-term mem-
ory networks. J Med Imaging 2018;6(1):1-7; with
permission.)

Fig. 8. Breast lesion classification pipeline using multi-
parametric MRI exams using (A) human-engineered
radiomics and (B) deep learning. (A) Radiomic fea-
tures are extracted from dynamic contrast-enhanced
(DCE), T2-weighted (T2w), and diffusion-weighted
(DWI) MRI sequences. Information from the three se-
quences is integrated using two fusion strategies:
feature fusion, that is, concatenating features ex-
tracted from all sequences to train a classifier, and
classifier fusion, that is, aggregating the probability
of malignancy output from all single-parametric clas-
sifiers via soft voting. Parentheses contain the
numbers of features extracted from each sequence.
The dashed lines for DWI indicate that the DWI
sequence is not available in all cases and is included
in the classification process when it is available. (B) In-
formation DCE and T2wMRI sequences are integrated
using three fusion strategies: image fusion, that is,
fusing DCE and T2w images to create RGB composite
image, feature fusion as defined in (A), and classifier
fusion as defined in (A). ADC, apparent diffusion coef-
ficient; CNN, convolutional neural network; MIP,
maximum intensity projection; ROI, region of interest;
ROC, receiver operating characteristic; SVM, support
vector machine. ([A] From Hu Q, Whitney HM, Giger
ML. Radiomics methodology for breast cancer diag-
nosis using multiparametric magnetic resonance im-
aging. J Med Imaging. 2020;7(4):44502; with
permission. [B] Adapted from Hu Q, Whitney HM,
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was superior to image fusion and classifier output
fusion.67 Notable disagreement was observed be-
tween the predictions from classifiers based on
different MRI sequences, suggesting that incorpo-
rating multiple sequences would be valuable in
predicting the probability of malignancy of a lesion
(Fig. 9).61,67

CADx systems based on human-engineered
radiomics and deep learning models have been
compared and combined. It is worth noting that
these two types of machine intelligence have
achieved comparable performances and have
shown synergistic improvements when combined
across multiple modalities (Fig. 10).26,65,75
Downloaded for Anonymous User (n/a) at Nevada System of Higher Education from ClinicalKey.com by Elsevier on January 
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breast cancer diagnosis using multiparametric MRI. Sci
Rep. 2020;10(1):1-11; with permission. This article is
licensed under a Creative Commons Attribution 4.0 In-
ternational License: http://creativecommons.org/
licenses/by/4.0/.)
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The FDA cleared the first commercial breast
CADx system (QuantX from Quantitative Insights,
Chicago, IL; now Qlarity Imaging) for clinical trans-
lation in 2017,76,77 and others have followed for
various breast imaging modalities for use as sec-
ondary or concurrent readers. In addition to evalu-
ating the diagnostic performance of the AI
algorithms themselves, CADx systems have also
been evaluated in reader studies when their pre-
dictions are incorporated into the radiology work-
flow as an aid. Improvement in radiologists’
performance has been demonstrated on multiple
imaging modalities in the task of distinguishing be-
tween benign and malignant breast lesions.77–80
Fig. 9. A diagonal classifier agreement plot between the
(DCE)-MRI single-sequence deep learning–based classifiers
nancy (PM) scores predicted by the DCE classifier and th
lesion for which predictions were made. Points along or ne
high classifier agreement; points far from the diagonal i
tween the two classifiers is observed, suggesting that fea
complementary information, and it is likely valuable to in
when making a computer-aided diagnosis prediction. Ex
extreme agreement/disagreement are also included. (From
odology for improved breast cancer diagnosis using multi
sion. This article is licensed under a Creative Comm
creativecommons.org/licenses/by/4.0/.)
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Once a cancer is identified, further workup
through biopsies provides information on the
stage, molecular subtypes, and other histopath-
ological factors to yield information on prognosis
and treatment options. Beyond diagnosis, AI al-
gorithms can also further characterize
cancerous lesions to assist in prognosis and
subsequent patient management decisions.
Many studies have proposed methods to assess
the tumor grade, tumor extent, tumor subtype,
and molecular subtypes and other histopatho-
logical information of breast lesions using
various imaging modalities and shown promising
results (Fig. 11).81–93 AI methods can relate
imaging-based characteristics to clinical, histo-
pathology, or genomic data, contributing to pre-
cision medicine for breast cancer. In a
collaborative effort through the National Cancer
Institute The Cancer Genome Atlas Breast
Phenotype Research Group, for example, inves-
tigators studied mappings from image-based in-
formation of breast tumors extracted to clinical,
T2-weighted (T2w) and dynamic contrast-enhanced
. The x-axis and y-axis denote the probability of malig-
e T2w classifier, respectively. Each point represents a
ar the diagonal from bottom left to top right indicate
ndicate low agreement. A notable disagreement be-
tures extracted from the two MRI sequences provide
corporate multiple sequences in multiparametric MRI
amples of lesions on which the two classifiers are in
Hu Q, Whitney HM, Giger ML. A deep learning meth-
parametric MRI. Sci Rep. 2020;10(1):1-11; with permis-
ons Attribution 4.0 International License: http://

Education from ClinicalKey.com by Elsevier on January 
. Copyright ©2023. Elsevier Inc. All rights reserved.
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Fig. 10. Left column: Fitted binormal ROC curves
comparing the performances of classifiers based on
human-engineered radiomics, convolutional neural
network (CNN), and fusion of the two on three imag-
ing modalities. Right column: Associated Bland-Alt-
man plots illustrating agreement between the
classifiers based on human-engineered radiomics
and CNN. Since the averaged output is used in the
fusion classifier, these plots also help visualize poten-
tial decision boundaries for the fusion classifier. (From
Antropova N, Huynh BQ, Giger ML. A deep feature
fusion methodology for breast cancer diagnosis
demonstrated on three imaging modality datasets.
Med Phys 2017;44(10):5162-71; with permission.)
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molecular, and genomic markers. Statistically
significant associations were observed between
enhancement texture features on DCE-MRI and
molecular subtypes.84 Associations between
MRI and genomic data were also reported,
shedding light on the genetic mechanisms that
govern the development of tumor phenotypes,
which formed a basis for the future development
of noninvasive imaging-based techniques for
accurate cancer diagnosis and prognosis
(Fig. 12).94

Besides its noninvasiveness, such an imaging-
based “virtual biopsy” can also provide the advan-
tage of examining a tumor in its entirety, rather
than only evaluating the biopsy samples that
constitute small parts of a tumor. Given the
Downloaded for Anonymous User (n/a) at Nevada System of H
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important role that tumor heterogeneity plays in
the prognosis of cancerous lesions, AI-assisted
analysis of images presents a strong potential
impact on breast cancer prognosis.
ARTIFICIAL INTELLIGENCE IN BREAST CANCER
TREATMENT RESPONSE AND RISK OF
RECURRENCE

AI algorithms can also be used to assess tumor
response to therapy and the risk of recurrence
during the treatment of breast cancer. In one
example, the size of the most enhancing voxels
within the tumor, which was initially extracted
from DCE-MRI using a fuzzy c-means method
for CADx, has been found useful in assessing
recurrence-free survival before or early on during
neoadjuvant chemotherapy (NAC) and yielded a
comparable performance as another semi-
manual method on cases in the I-SPY1 trial.95–97

Another recent study found that while pre-NAC
tumor features generally appear uninformative
in predicting response to therapy, some pre-
NAC lymph node features are predictive.98

Others have used CNNs to predict pathologic
complete response (pCR) using the I-SPY1 data-
base and yielded probability heatmaps that indi-
cate regions within the tumors most strongly
associated with pCR.99 In another study, a long
short-term memory network was able to predict
recurrence-free survival in patients with breast
cancer only using MRIs acquired early on during
the NAC treatment.99 Furthermore, in a study by
the TCGA Breast Phenotype Research Group,
breast MRIs were quantitatively mapped to
research versions of gene assays and showed a
significant association between the radiomics
signatures and the multigene assay recurrence
scores, demonstrating the potential of MRI-
based biomarkers for predicting the risk of
recurrence.100

Using AI to predict treatment response effec-
tively serves as a “virtual biopsy” that can be con-
ducted during multiple rounds of therapy to track
the tumor over time when an actual biopsy is not
practical. Such image-based signatures have the
potential for increasing the precision in individual-
ized patient management. Moreover, currently un-
known correlations between observed
phenotypes and genotypes may be discovered
through the mappings between imaging data and
genomic data, and the unveiled image-based bio-
markers can be used in routine screening, prog-
nosis, and monitoring in the future, providing
possibilities to improve early detection and better
management of the disease.
igher Education from ClinicalKey.com by Elsevier on January 
mission. Copyright ©2023. Elsevier Inc. All rights reserved.



Fig. 11. Imaging features significantly associated with molecular subtypes (after correction for multiple testing)
in both discovery and validation cohorts, (A–D) four features for distinguishing luminal A versus nonluminal A; (E,
F) two features for distinguishing luminal B versus nonluminal B; and (G, H) two features for distinguishing basal-
like versus nonbasal-like. Wilcoxon rank-sum test was implemented to investigate pairwise differences. Also, the
FDR adjusted for multiple testing is reported. (From Wu J, Sun X, Wang J, et al. Identifying relations between
imaging phenotypes and molecular subtypes of breast cancer: Model discovery and external validation. J
Magn Reson Imaging. 2017;46(4):1017-1027; with permission.)

Fig. 12. Statistically significant associations between genomic features and radiomic features on MRI in breast
carcinoma. Genomic features are organized into circles by data platform and indicated by different node colors.
Genomic features without statistically significant associations are not shown. Radiomic phenotypes in six cate-
gories are also indicated by different node colors. The node size is proportional to its connectivity relative to
other nodes in the category. (From Zhu Y. et al. Deciphering genomic underpinnings of quantitative MRI-
based radiomic phenotypes of invasive breast carcinoma. Sci Rep 2015;42(6):3603; with permission.)
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CHALLENGES IN THE FIELD AND FUTURE
DIRECTIONS

Although many breast imaging AI publications are
published each year, there are still only a few algo-
rithms that are being translated to clinical care,
hindered often by lack of large data sets, which
are diverse and well-curated, for training and inde-
pendent testing. Creating such large data sets will
require a change in data-sharing culture allowing
for medical institutions to contribute their medical
images and data to common image repositories
for the public good.

Furthermore, for AI methods to be translated ul-
timately to clinical care, the algorithms need to
demonstrate high performance over a large range
of radiological presentations of various breast can-
cer states on user-friendly interfaces.

In addition, AI methods can be perceived as a
“black box” for medical tasks. More research is
needed on the explainability of AI methods to help
the developer and on the interpretability of AI
methods to aid the user. It is interesting to contem-
plate when might AI be acceptable without giving
reasons for its output. To reach such a stage will
require high performance in the given clinical task
along with high reproducibility and repeatability.

AI in breast imaging is expected to impact both
interpretation efficacy and workflow efficiency in
radiology as it is applied to imaging examinations
being routinely obtained in clinical practice.
Although there aremore andmore novelmachine in-
telligence methods being developed, currently the
main use will be in decision support, that is, com-
puters will augment human decision-making as
opposed to replacing radiologist decision-making.
CLINICS CARE POINTS
� Radiologists need to understand the perfor-
mance level and correct use of AI applications
in medical imaging.
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